Theoretical and practical courses

Ilam University of Medical Sciences

Introduction of the course: Analysis and evaluation of air samples in the second semester of the academic year 2020-2021

School: Health Department: Occupational Health Engineering

Course and degree: Bachelor of Occupational Health Day

Time and place: Wednesday 8-10

Number and type of unit (theoretical): 2 theoretical units - 1 practical unit

Name of course manager (course instructor): Dr. Shiva Souri

Prerequisite courses: Decomposition Chemistry, Basics of Pollutant Sampling

Office Address: School of Health

Phone and contact days: Saturday to Wednesday – 32235717

Overall Objective of the Lesson: The ability to quantitatively measure the density of air pollutants in order to assess chemical risks

Lesson Description: How to analyze and evaluate samples prepared from workplace air

Specific or partial objectives of the course:

1- Comprehensive familiarity with the principles of sample preparation

2- Comprehensive familiarity with making standard solutions and drawing calibration curves

3- Comprehensive familiarity with determining the density of air pollutants with optical spectrometer (spectrophotometer)

4- Comprehensive familiarity with determining the density of air pollutants with atomic spectrometers

5- Comprehensive familiarity with determining the density of air pollutants by chromatographic method

6- Comprehensive familiarity with determining the density of air pollutants by titration and gravimetric methods

7- Comprehensive familiarity with determining the density of air pollutants by counting method

8- Comprehensive familiarity with reviewing and analyzing data and analysis findings

9- Comprehensive familiarity with the criteria and criteria for evaluating the results

10- Comprehensive familiarity with comprehensive familiarity with determining the density of air pollutants with atomic absorption spectrometer

Student duties (student homework during the semester):

1- The student is obliged to be prepared in each session to answer the questions related to the previous sessions in written and oral form.

2- Active participation in the class

The main sources of the lesson:

- 1- Bahrami Abdolrahman, Sampling and Analysis of Air Pollutants, Volumes 1, 2 and 3
- 2- Guide for identification and evaluation of chemical harmful agents, Workplace Health Center
- 3- Stern MB, Application and Computational Elements Industrial Hygiene, Last edition
- 4- Skoog and West, Principle of Instrumental Analysis

Teaching methods + teaching aids used:

Lectures, discussions, questions and answers, PowerPoint, use of magic and whiteboard

Methods and time of assessment and evaluation of the student and the bar related to each evaluation:

- Homework, class activities, evaluation during the semester and conference r score, midterm r score, end-of-term exam r score, total r score

Lesson rules and expectations from students:

Schedule and predicted contents of each theory session

session	topic	
		Necessary preparation of
		students before the start of the
		class
1	Different methods of preparing air samples	Methods of preparation of air samples collected by surface adsorbents (chemical, thermal, ultrasonic and microwave methods)
2	Different methods of preparing air samples	

		Methods of preparation of air
		samples collected in the
		impinger (counting and chemical
		methods)
3	Different methods of preparing air samples	
		Methods of preparation of air
		samples collected by the filter
		(digestion, soxniet, solvent
		wasning, smootning, dry asn,
4	Construction of standard colutions and drawing of	and clarification methods)
4	collibration curves	Mothod of making standard
		solutions (mother middle and
		solutions (mother, mudie and
		types of calibration surves
5	Determination of air pollutant density with optical	
5	spectrophotometer	Basic concepts of absorption and
		emission spectra and Beer
		Lambert relationship and various
		UV-VIS spectroscopy methods
6		,
	Determination of air pollutant density with atomic	Atomic absorption and emission
	spectrometers	spectrometers
7	Determination of air pollutant density with atomic	
	absorption spectrometer	Atomic Absorption Spectroscopy
		Methods of Furnace, Furnace,
		Hydrid Generation and Cold
		Vapor
8		
	Midterm exam	
9		
	Determination of air pollutant density by chromatographic	Basic concepts of
	method	chromatography) gas and liquid
10	Introduction of chromatographic devices	
		Familiarity with GC, HPLC and
		Chromatograph Ion devices and
		their application in determining
		the density of air samples
11		
	Determination of air pollutant density by titration and	volumetric and gravimetric
	gravimetric methods	methods in determining the
12		density of air samples
12	Determination of air nollutant density by counting method	Microscopic oxamination
		methods for counting
		determining the dimensions of
		particles and fibers in air
		particles and inders in all

		samples and introducing
		different types of graticules and
		microscope calibration
13	Review and analysis of data and analysis findings	Validation methods and quality
		control of analysis results (types
		of errors, accuracy, precision,
		bias, coefficient of variation,
		etc.)
14	Criteria and criteria for evaluating the results	
		Interpretation of results in
		normal and unconventional
		encounters (unusual work shifts)
15	Criteria and criteria for evaluating the results	
		Interpretation of results in
		exposure to a mixture of
		chemical contaminants
16	End of semester exam	

Practical work programs in the laboratory:

1- Sampling, preparation and analysis of a compound by titration method

2- Sampling and analysis of a chemical compound by spectrophotometric method

3- Sampling, preparation and analysis of a volatile compound with the help of surface adsorbent and analysis by case chromatography

4- Preparing a sample prepared with a gas bottle and decomposing it with the help of liquid chromatography device with excellent performance

5- Preparing a sample prepared from a metal compound with a filter and decomposing with the help of an atomic absorption device

6- Microscope calibration, filter clarification and asbestos fiber counting

7- Preparing a standard solution of quartz and how to fix it on a silver filter